Data Wrangling & Visualization

15,000.00

Category:

Description

Course Syllabus:

Day 1: Introduction to Data Wrangling

  • Overview of Data Science and Data Wrangling
  • Introduction to data formats: CSV, Excel, JSON, SQL
  • Introduction to Python for Data Wrangling
  • Working with Pandas for data manipulation

Day 2: Data Importing and Exporting

  • Importing Data from various sources (CSV, Excel, JSON, SQL)
  • Exporting data back to different formats
  • Handling large datasets efficiently

Day 3: Data Cleaning: Handling Missing Data

  • Identifying missing or null values
  • Techniques for handling missing data: Imputation, deletion, interpolation
  • Understanding outliers and anomalies in data

Day 4: Data Transformation and Manipulation

  • Working with Pandas data structures: Series, DataFrame
  • Data filtering, sorting, and indexing
  • Aggregation, grouping, and merging datasets

Day 5: Data Exploration and Feature Engineering

  • Descriptive statistics and summarizing data
  • Identifying trends, patterns, and correlations in data
  • Feature engineering: Creating new variables

Day 6: Introduction to Data Visualization

  • Principles of effective data visualization
  • Introduction to Matplotlib for static plots
  • Creating line, bar, histogram, and scatter plots

Day 7: Advanced Data Visualization Techniques

  • Advanced Matplotlib plots: Subplots, annotations, and color palettes
  • Introduction to Seaborn: Creating beautiful statistical graphics
  • Heatmaps, boxplots, pairplots, and violin plots

Day 8: Interactive Visualizations

  • Introduction to Plotly for interactive visualizations
  • Creating interactive plots: Line, bar, pie charts
  • Customizing Plotly charts with color, size, and hover effects

Day 9: Visualizing Complex Datasets

  • Handling multi-dimensional data
  • Visualizing time-series data
  • Geographic data visualization: Choropleth maps

Day 10: Final Project and Presentation

  • End-to-end data wrangling and visualization project
  • Presenting insights and creating interactive dashboards
  • Sharing visualizations using platforms like Jupyter Notebook or Tableau